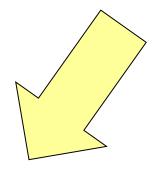
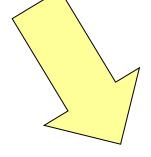
Clinical Pharmacogenetics Implementation Consortium (CPIC[®]) tables for EHR implementation

Mary V. Relling, Pharm.D.



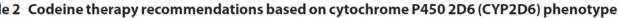
2009/2010 Survey of pgen "experts" (PGRN and ASCPT): top 3 challenges to implementing pharmacogenetics in the clinic

- 95% of respondents selected: "process required to translate genetic information into clinical actions"
- Next 2 responses
 - Genotype test interpretation (e.g. using genotype information to assign phenotype)
 - Providing recommendations for selecting the drug/gene pairs to implement


Clin Pharmacol Ther. 2011 89:464-7. Similar in 2014

Since 2009, working to facilitate the process of preemptive clinical pharmacogenetic testing

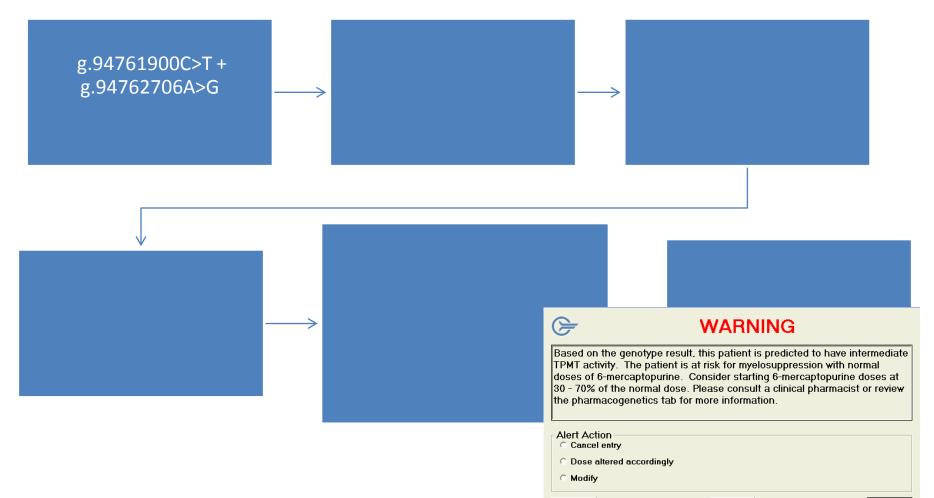
Clinical Pharmacogenetics Implementation Consortium


St. Jude Children's Research Hospital PG4KDS Protocol

Long-term goal: preemptive pharmacogenetic testing as the standard of care... for everyone All CPIC guidelines.

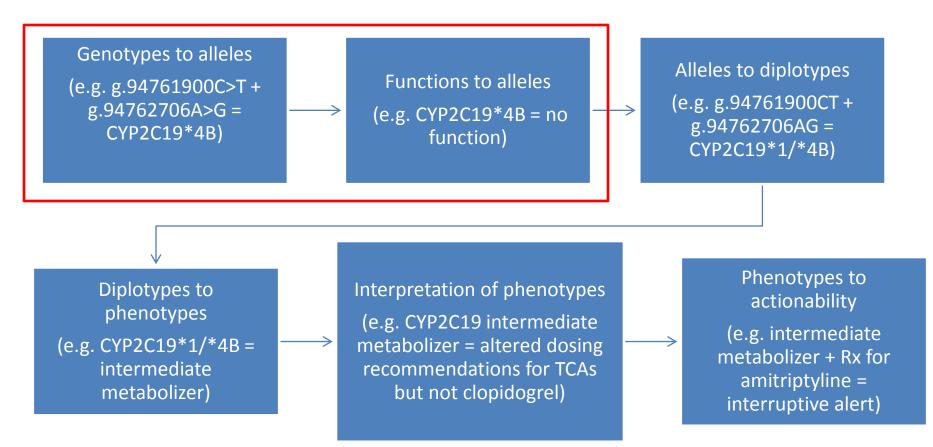
The most clinically important part of a CPIC guideline is "Table 2": Linking phenotypes to prescribing actions

Table 2 Codeine therapy recommendations based on cytochrome P450 2D6 (CYP2D6) phenotype

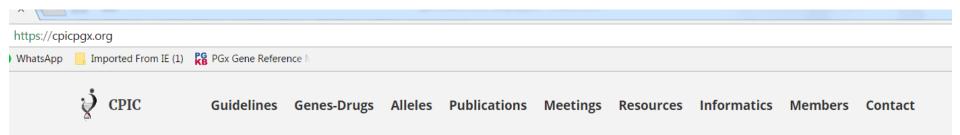

		,	Classification of recommendation	
Phenotype	Implications for codeine metabolism	Recommendations for codeine therapy	for codeine therapy ^a	Considerations for alternative opioids
Ultrarapid metabolizer	Increased formation of morphine following codeine administration, leading to higher risk of toxicity		Strong	Alternatives that are not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to a lesser extent, hydrocodone and oxycodone are not good alternatives because their metabolism is affected by CYP2D6 activity. ^{b,c}
Extensive metabolizer	Normal morphine formation	Use label-recommended age- or weight-specific dosing.	Strong	—
Intermediate metabolizer	Reduced morphine formation	Use label-recommended age- or weight-specific dosing. If no response, consider alternative analgesics such as morphine or a nonopioid.	Moderate	Monitor tramadol use for response.
Poor metabolizer	Greatly reduced morphine formation following codeine administration, leading to insufficient pain relief	Avoid codeine use due to lack of efficacy.	Strong	Alternatives that are not affected by this CYP2D6 phenotype include morphine and nonopioid analgesics. Tramadol and, to a lesser extent, hydrocodone and oxycodone are not good alternatives because their metabolism is affected by CYP2D6 activity; these agents should be avoided. ^{b,c}

How do we get from genotype to interruptive CDS for prescribing?

Add'l info


OK

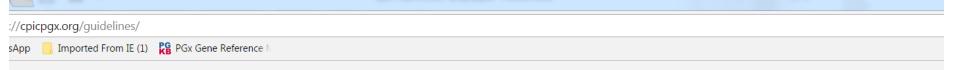
Improvements to facilitate implementation



- Web versions of tables; links in guideline and supplement
- More comprehensive listing of alleles
- CPIC standardized terms for allele function and phenotype
- More unambiguous ID of alleles
- Citations for assigning function to alleles
- More comprehensive listing of diplotypes and assignments of phenotypes
- More emphasis on CDS language for prescribing

CPIC tables allow translation of genetic test results to actionability

https://cpicpgx.org/guidelines/ https://www.pharmgkb.org/page/cyp2c19RefMaterials


CPIC open meeting on 3/15/2017 in Washington DC - more details on the meetings page

What is CPIC?

The Clinical Pharmacogenetics Implementation Consortium (CPIC) was formed as a shared project between PharmGKB and

Background

One barrier to clinical implementation of pharmacogenetics is the lack of freely available, peer-reviewed, updatable, and detailed gene/drug

👌 СРІС

Guidelines Genes-Drugs Alleles Publications Meetings Resources Informatics Members Contact

Guidelines

CPIC guidelines are designed to help clinicians understand HOW available genetic test results should be used to optimize drug therapy, rather than WHETHER tests should be ordered. A key assumption underlying the CPIC guidelines is that clinical high-throughput and pre-emptive (pre-prescription) genotyping will become more widespread, and that clinicians will be faced with having patients' genotypes available even if they have not explicitly ordered a test with a specific drug in mind. CPIC's guidelines, processes and projects have been endorsed by several professional societies – read more.

Each CPIC guideline adheres to a standard format, and includes a standard system for <u>grading levels of evidence linking genotypes to</u> <u>phenotypes</u>, how to assign phenotypes to clinical genotypes, prescribing recommendations based on genotype/phenotype, and a standard system for assigning <u>strength to each prescribing recommendation</u>. The SOP for guideline creation has been published in Current Drug Metabolism: <u>Incorporation of Pharmacogenomics into Routine Clinical Practice: The Pharmacogenetics Implementation</u> Consortium (CPIC) Guideline Development Process. The CPIC authorship guidelines were updated in June 2014.

			Search:
DRUGS	GENES		4
abacavir	HLA-B	guideline	

CPIC® Guideline for Voriconazole and CYP2C19

Most Recent Guideline Publication

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for *CYP2C19* and Voriconazole Therapy (December 2016)

Updates since publication: No updates on dosing recommendations since publication.

Tables provided in the main manuscript of the guideline

Table 1. Assignment of likely CYP2C29 phenotype based on genotypes

Table 2. Dosing recommendations for voriconazole based on CYP2C19 phenotype for adult patients

Table 3. Dosing recommendations for voriconazole based on CYP2C19 phenotype for pediatric patients (children and adolescents <18 years old)

Supplement to: Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Voriconazole Therapy (December 2016)

Tables provided in the guideline publication supplement or referenced in the guideline^a

Levels of Evidence Linking Genotype to Phenotype
CYP2C19 Allele Definition Table
CYP2C19 Allele Functionality Table 🔀
CYP2C19 Frequency Table
CYP2C19 Diplotype-Phenotype Table
Gene Resource Mapping
CYP2C19 Gene Resource Mappings 🗟

About Us - News & Events

Collaborators Search -

Download F

Gene-specific Information Tables for CYP2C19

CPIC

Gene-specific; footnotes indicate drugspecific concerns

This page contains reference files created by PharmGKB and CPIC. The files support CPIC guidelines, but are also general resources for CYP2C19.

<u>CYP2C19 Allele Definition Table</u>

- Information about what variants define star (*) alleles
- Mapping of variants to the human genome GRCh38, the RefSeq Gene sequence and protein sequence, and provides rsIDs, if available
- Allele functionality using <u>CPIC standardized terms</u>
- <u>CYP219 Allele Functionality Table</u>
 - · References for the allele functionality provided in the Allele Definition Table

<u>CYP2C19 Frequency Table</u>

- · Population-based allele frequency reported by references
- · Calculated allele frequency by major ethnic groups based on frequencies reported by references
 - Worldwide race/ethnic designations correspond to the Human Genome Diversity Project Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) [Articles: 16355252, 12493913], with the addition of the African American category
- · Calculated diplotype frequency
- Calculated phenotype frequency

<u>CYP2C19 Diplotype-Phenotype Table</u>

- · Mapping of each diplotype to possible phenotype
- $\circ~$ Mapping of possible phenotype to EHR priority result notation and consultation text
- Possible implementation workflow diagram

<u>CYP2C19 Gene Resource Mappings</u>

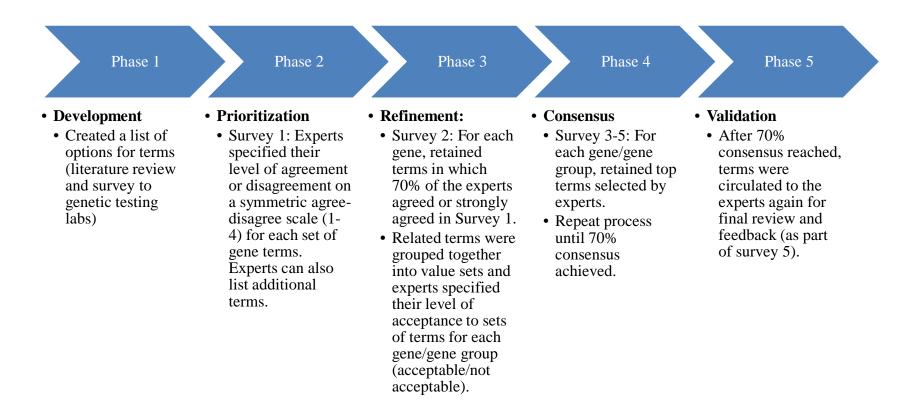
Mapping of gene to ID or code for HGNC, NCBI, Ensembl and PharmGKB

×Щ	5 ° ° ·	🗳 abe =				(CYP2C19_allele_d	lefinition_table (8).xlsx	- Excel					
FI	E HOME I	NSERT PAGE LA	YOUT FORMULA	AS DATA RE	VIEW VIEW									-
ھ	X Cut			_								Σ AutoSu	m • Δ	
	🛛 👗 Cut 🗋 🖻 Copy 👻	Arial	- 10 - A A	≡≡ ≥ ≫.	🗬 Wrap Text	General	-		Normal	Bad		► AutoSur	™` 2 ▼ #	1
	e 💉 Format Paint	в <i>I</i> <u>U</u> -	- <u>A</u> - <u>A</u> -	≡ ≡ ≡ € •	🗉 🧮 Merge & Ce	nter - \$ - %	, €.0 .00 CC	onditional Format as	Good	Neutral	Insert Delete F		Sort & Find &	
-							FOI	rmatting • Table •			- · ·	• Cicai	Filter - Select	- T
	Clipboard				ignment	5 Num	per 👒		Styles		Cells		Editing	
A1	-	$\times \checkmark f_x$	GENE: CYP2C1	19										
	Α	В	С	D	E	F	G	Н		J	K	L	М	
1	GENE: CYP2C19	1/23/2017												\rightarrow
2		Nucleotide chang		-2020C>A	-1439T>C	-1041G>A	-806C>T	-13G>A	1A>G	7C>T	10T>C	50T>C	55A>C	83
3		Effect on protein	5' region	5' region	5' region	5' region	5' region	5' region	M1V	P3S	F4L	L17P	119L	K2
4		Position at NC_0	g.94760676C>T	g.94760686C>A	g.94761267T>C	g.94761665G>A	g.94761900C	>T g.94762693G>A	g.94762706A>G	g.94762712C>T	g.94762715T>C	g.94762755T>C	g.94762760A>C) g.9
5		Position at NG_0	g.2971C>T	g.2981C>A	g.3562T>C	g.3960G>A	g.4195C>T	g.4988G>A	g.5001A>G	g.5007C>T	g.5010T>C	g.5050T>C	g.5055A>C	g.\$
6		rsID	rs113164681	rs111490789	rs17878739	rs7902257	rs12248560	rs367543001	rs28399504	rs367543002	rs367543003	rs55752064	rs17882687	
7	Allele	Allele Functional	Status											
8	*1	Normal function	С	С	Т	G	С	G	А	С	Т	Т	А	A
9	*2	No function												
10	*3	No function												
11	*4A	No function							G					
12	*4B	No function					Т		G					
13	*5	No function												
14	*6	No function												
15	*7	No function												
16	*8	No function												
17	*9	Decreased function	on											
18	*10	Decreased functi	on											
19		Normal function											<u> </u>	\perp
20	*12	Unknown function	1									<u> </u>	<u> </u>	\perp
21	*13	Normal function											<u> </u>	\perp
22	*14	Unknown function	1									С	<u> </u>	\perp
23	*15	Normal function											С	\perp
24	*16	Decreased function	on									<u> </u>	<u> </u>	\perp
25	*17	Increased functio	n				Т					ļ	<u> </u>	
26	*18	Normal function										ļ	<u> </u>	\square
-	Alleles	(+)							E				•	
REAL	Y												▦ ▣ ੶	
					x∎						-			a
								100				v 20 🖻	- 🔍 🛃 🖂 💽	-

Table 1 from main manuscript: **Example** translation of diplotypes to phenotypes

Table 1 Assignment of likely thiopurine methyltransferase phenotypes based on genotypes

Likely phenotype	Genotypes	Examples of diplotypes
Homozygous wild-type or normal, high activity (constitutes ~86–97% ^a of patients)	An individual carrying two or more functional (*1) alleles	*1/*1
Heterozygote or intermediate activity (~3–14%ª of patients)	An individual carrying one functional allele (*1) plus one nonfunctional allele (*2, *3A, *3B, *3C, or *4)	*1/*2, *1/*3A, *1/*3B, *1/*3C, *1/*4
Homozygous variant, mutant, low, or deficient activity (~1 in 178 to 1 in 3,736 patientsª)	An individual carrying two nonfunctional alleles (*2, *3A, *3B, *3C, or *4)	*3A/*3A, *2/*3A, *3C/*3A, *3C/*4, *3C/*2, *3A/*4



Clin Pharmacol Ther. 2011 Mar;89(3):387-91.

x	. 5- 8-	ter abe ∓				CYP2C19_allele_definition_table (8).xlsx - Excel						
F	FILE HOME	INSERT PAGE LAYOUT	FORMULA	S DATA REV	VIEW VI	FW/						
	Cut	Arial - 10	· A A	≡≡ ≫	•	Comprehensive listing of alleles						
Pa	ste ✓ Format Paint Clipboard	er B I U - Eont	<u>\</u> - <u>A</u> -	≡≡≡ €€ ₹ Ali		annotated in literature, even if not						
A1			NE: CYP2C1			im	portan	it or un	known	functio	on	
							•		e refere			C
	•	P	C	D		AII	giitui	nunpie	elelele	ince se	quence	2
-	GENE: CYP2C19	B 1/23/2017	С	D			o stan	dardizo	d allele	functio	h	
1		Nucleotide chang -20300	C>T	-2020C>A		03				iuncin		
3		Effect on protein 5' regi		5' region	5	no	mencl	ature				
4		Position at NC_0(g.9476		g.94760686C>A	g.	110	inclicit	ature				
5		Position at NG_0(g.2971		g.2981C>A	g.3562T>	С	g.3960G>A	g.4195C>T	g.4988G>A	g.5001A>G	g.5007C>T	g.501(
6		rsID rs1131	164681	rs111490789	rs1787873	39	rs7902257	rs12248560	rs367543001	rs28399504	rs367543002	rs367
7	Allele	Allele Functional Otate										
8	*1	Normal function C		С	Т		G	С	G	Α	С	Т
9	*2	No function										
10	*3	No function										
11	*4A	No function								G		
12	*4B	No function						Т		G		
13	*5	No function										
14	*6	No function										
15	*7	No function										
10	*8	No function										
17	*9	Decreased function								_		
18	*10	Decreased function										
-19		Normal function										
20		Unknown function										
21		Normal function										
22		Unknown function										
23		Normal function										
22 23 24 25		Decreased function										
		Increased function						Т				
20	*10	Normal function										
	Alleles	(+)								: •		

CPIC Phenotype Term Standardization Project

Goal: standardize terms for allele function and on phenotypes

Group memberships for Delphi process to standardize pgen terms

- CPIC
- ClinVar
- PGRN
- CDC Pgx nomenclature WG
- GA4GH's Clinical WG
- ClinGen PG and data modeling WG
- IGNITE
- eMERGE
- IUPHAR

- ACMG Laboratory Standards and Guidelines Committee
- CAP Pharmacogenetics WG
- HL7 Clinical Genomics WG
- IOM's Roundtable on Translating Genomic-Based Research for Health
- AMIA genomics and translational bioinformatics WG
- European Medicines Agency
- G2MC Pharmacogenomics WG

Official journal of the American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE

Open

Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC)

Kelly E. Caudle, PharmD, PhD¹, Henry M. Dunnenberger, PharmD², Robert R. Freimuth, PhD³, Josh F. Peterson, MD^{4,5}, Jonathan D. Burlison, PhD¹, Michelle Whirl-Carrillo, PhD⁶, Stuart A. Scott, PhD⁷, Heidi L. Rehm, PhD⁸, Marc S. Williams, MD⁹, Teri E. Klein, PhD⁶, Mary V. Relling, PharmD¹, James M. Hoffman, PharmD, MS¹

Introduction: Reporting and sharing pharmacogenetic test results across clinical laboratories and electronic health records is a crucial step toward the implementation of clinical pharmacogenetics, but allele function and phenotype terms are not standardized. Our goal was to develop terms that can be broadly applied to characterize pharmacogenetic allele function and inferred phenotypes.

Materials and methods: Terms currently used by genetic testing laboratories and in the literature were identified. The Clinical Pharmacogenetics Implementation Consortium (CPIC) used the Delphi method to obtain a consensus and agree on uniform terms among pharmacogenetic experts.

Results: Experts with diverse involvement in at least one area of pharmacogenetics (clinicians, researchers, genetic testing laborato-

rians, pharmacogenetics implementers, and clinical informaticians; n = 58) participated. After completion of five surveys, a consensus (>70%) was reached with 90% of experts agreeing to the final sets of pharmacogenetic terms.

Discussion: The proposed standardized pharmacogenetic terms will improve the understanding and interpretation of pharmacogenetic tests and reduce confusion by maintaining consistent nomenclature. These standard terms can also facilitate pharmacogenetic data sharing across diverse electronic health care record systems with clinical decision support.

Genet Med advance online publication 21 July 2016

Key Words: CPIC; nomenclature; pharmacogenetics; pharmacogenomics; terminology

Final Standardized Terms: Allele function

Term/Gene Category	Final Term	Functional Definition	Example diplotypes/alleles
Allele Functional Status-all genes	Increased Function	Function greater than normal function	CYP2C19*17
Ŭ	Normal Function	Fully functional/wild-type	CYP2C19*1
	Decreased Function	Function less than normal function	CYP2C19*9
	No Function	Non-functional	CYP2C19*2
	Unknown Function	No literature describing function or the allele is novel	CYP2C19*29
	Uncertain Function	Literature supporting function is conflicting or weak	CYP2C19*12

Caudle KE, et al. Genet Med. 2016; Jul 21 [Epub ahead of print]

Result History

Result FI	istory		
Value	Valid From	Valid Until	
Priority	5/25/2016 18:04	Current	
Priority	5/25/2016 17:58	5/25/2016 18:04	
Result	Specimen Comm	nents Action List	
1.) (Medium Import	ance) Result (Comment by PASTERNAK, AMY on May 25, 2016 18:04
***PHAR	MACOGENETICS	CONSULT FOR**	*
CYP2C	19 GENOTYPE		
			I/12/2016 07:54:00
		ype Result: *15/*17 apment: CYP2C19	/ 9 Rapid Metabolizer
011 201	o Friendrype Abbi	gillion. OT 2013	
This resu	ult signifies that the	e patient has one o	copy of a normal function allele (*15) and one copy of an increased function allele (*17) Based on the genotype
recult th	ie nationt is prodic	ted to be a rapid n	metabolizer of CVP2C19 substrates. This means that the nations may be at a high risk for an adverse or poor

result, this patient is predicted to be a rapid metabolizer of CYP2C19 substrates. This means that the patient may be at a high risk for an adverse or poor response to medications that are metabolized by CYP2C19 (such as amitriptyline). To avoid an untoward drug response, dose adjustments or alternative therapeutic agents may be necessary for medications metabolized by CYP2C19. For more information about specific medications metabolized by CYP2C19, please go to www.stjude.org/pg4kds.

Kristine Crews, Pharm.D., pager 2256.

2C19 RM 4-20160518

About Us - News & Events

CPIC Collaborators

Search - Download Help

Gene-specific Information Tables for CYP2C19

This page contains reference files created by PharmGKB and CPIC. The files support CPIC guidelines, but are also general resources for CYP2C19.

<u>CYP2C19 Allele Definition Table</u>

- Information about what variants define star (*) alleles
- Mapping of variants to the human genome GRCh38, the RefSeq Gene sequence and protein sequence, and provides rsIDs, if available
- Allele functionality using <u>CPIC standardized terms</u>
- <u>CYP219 Allele Functionality Table</u>
 - · References for the allele functionality provided in the Allele Definition Table

<u>CYP2C19 Frequency Table</u>

- · Population-based allele frequency reported by references
- · Calculated allele frequency by major ethnic groups based on frequencies reported by references
 - Worldwide race/ethnic designations correspond to the Human Genome Diversity Project Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) [Articles: <u>16355252</u>, <u>12493913</u>], with the addition of the African American category
- · Calculated diplotype frequency
- Calculated phenotype frequency

<u>CYP2C19 Diplotype-Phenotype Table</u>

- Mapping of each diplotype to possible phenotype
- Mapping of possible phenotype to EHR priority result notation and consultation text
- Possible implementation workflow diagram

<u>CYP2C19 Gene Resource Mappings</u>

Mapping of gene to ID or code for HGNC, NCBI, Ensembl and PharmGKB

x≣	5 ° ° '	🗳 abc	Ŧ					CYP2C:	19_allele_t	functionality_re	eference (5)).xlsx - Excel					
FILE	HOME	INSERT	PAGE LAYOUT	FORMULA	AS DATA	REVIE	W VIEW										403
	👗 Cut 🖻 Copy 🝷	Arial	• 12	· A A	==	» ?	🖹 Wrap Text	General	Ŧ	Ţ.		Normal	Bad	▲ ▼	← ■		∑ Auto
Paste	✓ Format Pain	ter B 1	<u>u</u> •	👌 - 🛕 -	≡≡≡	€≣ ∌≣	🖶 Merge & Center 🝷	\$ • % ,	€.0 .00 .€ 00.	Conditional Formatting *		Good	Neutral	-	Insert *	Delete Format	Clea
	Clipboard	Fa	Font	Due	: d a			6	:_			- 			_		
E1	·	\times	√ <i>f</i> _x Dr	Pro	vide	e Cli	tations	for as	ssig	nme	ent (ortun	ction 1	^{tO}	all	eies	

	А	В	С	D	E	F
1	GENE: CYP2C19	5/25/2016			Drug su	ıbstrate
2	Allele	Allele Functional Status	References	PMID	in vitro	in vivo
3	*1	Normal function	Romkes 1991	2009263		
4			Richardson 1995	7487078	mephenytoin, tolbutamide	
5			Blaisdell 2002	12464799	mephenytoin	
6			Hanioka 2007	17455109	mephenytoin	
7			Hanioka 2008	18312490	omeprazole	
8			Wang 2011	21325430	mephenytoin, omeprazole	
9			Takahashi 2015	25001882	clopidogrel, mephenytoin	
10	*2	No function	de Morais 1994	8195181	mephenytoin	
11			Ibeanu 1998	9732415		mephenytoin
12			Lee 2009	19661214		mephenytoin, omeprazole
13			Xiao 1997	9103550		mephenytoin
14	*3	No function	de Morais 1994	7969038		mephenytoin
15			Xiao 1997	9103550		mephenytoin
16	*4A	No function	Ferguson 1998	9435198		mephenytoin
17	*4B	No function	Scott 2012	21358751		clopidogrel
18	*5	No function	Xiao 1997	9103550		mephenytoin
19			Ibeanu 1998	10022751	mephenytoin, tolbutamide	mephenytoin
20			Wang 2011	21325430	mephenytoin, omeprazole	
21			Takahashi 2015	25001882	clopidogrel, mephenytoin	
22	*6	No function	Ibeanu 1998	9732415		mephenytoin
23			Wang 2011	21325430	mephenytoin, omeprazole	
24			Takahashi 2015	25001882	clopidogrel, mephenytoin	
25	*7	No function	Ibeanu 1999	10411572		mephenytoin
26	*8	No function	Ibeanu 1999	10411572	mephenytoin, tolbutamide	mephenytoin
-	→ She	eet1 +		: 4	·	· · · · · · · · · · · · · · · · · · ·

SPECIAL REPORT

ClinGen — The Clinical Genome Resource

Heidi L. Rehm, Ph.D., Jonathan S. Berg, M.D., Ph.D., Lisa D. Brooks, Ph.D.,
Carlos D. Bustamante, Ph.D., James P. Evans, M.D., Ph.D., Melissa J. Landrum, Ph.D.,
David H. Ledbetter, Ph.D., Donna R. Maglott, Ph.D., Christa Lese Martin, Ph.D.,
Robert L. Nussbaum, M.D., Sharon E. Plon, M.D., Ph.D., Erin M. Ramos, Ph.D.,
Stephen T. Sherry, Ph.D., and Michael S. Watson, Ph.D., fo

is a 4-star submitter to CliinVar

Figure 4. Review Levels Annotated in ClinVar.

Variants with assertions are rated according to the source and level of review for each submitted variant assertion. Submitters must comply with requirements (www.ncbi.nlm.nih.gov/clinvar/docs/assertion_criteria) for a submission to be assigned one, three, or four stars. Two stars are automatically assigned when multiple one-star submitted assertions are consistent. The distinction between submitters that have provided criteria and those that have not will begin in lung 2015.

About Us 🔻 News & Events

CPIC Collaborators

Search - Download Help

Gene-specific Information Tables for CYP2C19

This page contains reference files created by PharmGKB and CPIC. The files support CPIC guidelines, but are also general resources for CYP2C19.

<u>CYP2C19 Allele Definition Table</u>

- Information about what variants define star (*) alleles
- Mapping of variants to the human genome GRCh38, the RefSeq Gene sequence and protein sequence, and provides rsIDs, if available
- Allele functionality using <u>CPIC standardized terms</u>
- <u>CYP219 Allele Functionality Table</u>
 - References for the allele functionality provided in the Allele Definition Table

<u>CYP2C19 Frequency Table</u>

- Population-based allele frequency reported by references
- Calculated allele frequency by major ethnic groups based on frequencies reported by references
 - Worldwide race/ethnic designations correspond to the Human Genome Diversity Project Centre d'Etude du Polymorphisme Humain (HGDP-CEPI [Articles: <u>16355252</u>, <u>12493913</u>], with the addition of the African American category
- Calculated diplotype frequency
- Calculated phenotype frequency

<u>CYP2C19 Diplotype-Phenotype Table</u>

- Mapping of each diplotype to possible phenotype
- $\circ~$ Mapping of possible phenotype to EHR priority result notation and consultation text
- Possible implementation workflow diagram

<u>CYP2C19 Gene Resource Mappings</u>

Mapping of gene to ID or code for HGNC, NCBI, Ensembl and PharmGKB

Allele frequencies in major race/ethnic groups

	А	D	C	υ	E	Г	G	п	1	
1	Frequencies [®] of	CYP2C19 allel	es in major ra	ce/ethnic groups	b S					
		African Allele Frequency	African American Allele Frequency	Caucasian (European + North American) Allele	Middle Eastern Allele Frequency	East Asian Allele Frequency	South/Central Asian Allele Frequency	Americas Allele Frequency	Oceanian Allele Frequency	
2	CYP2C19 allele			Frequency						
3	*1 ^d	33.10	57.00	62.10	64.80	57.60	48.50	67.00	28.60	
4	*2	14.20	18.30	14.60	13.10	29.30	33.10	13.10	54.90	
5	*3	0.80	0.30	0.60	2.60	8.60	1.60	0.30	13.90	
6	*4A	0.00	0.00	0.30		0.10	0.00	0.03		
7	*4B		0.00							
8	*5	0.00	0.00	0.00		0.00	0.00	0.00		
9	*6	0.00	0.00	0.10		0.00	0.00	0.00		
10	*7	0.00	0.00	0.00		0.00	0.00	0.00		
11	*8	0.00	0.20	0.30		0.00	0.00	0.10		
12	*9	4.20	1.10	0.00		0.00		0.10		
13	*10	0.00	0.40	0.00		0.00		0.10		
14	*11				0.00	0.00				
15	*12	0.00	0.20	0.00		0.00		0.00		
16	*13	0.00	1.20	0.10		0.00		0.40		
17	*14	0.00	0.00	0.00		0.00		0.00		
18	*15	5.70	1.40	0.20		0.20		0.40		
19	*16		0.00	0.00		0.00		0.00		
20	*17	15.10	20.10	21.30	19.50	1.60	16.90	16.30	2.50	
71 ₹	*1 Q Allele	frequency by ra	Diplotyp	e frequency by ra	ce Phenotype f	n 10 requency by rac	e References	change log	(+) : ◀	

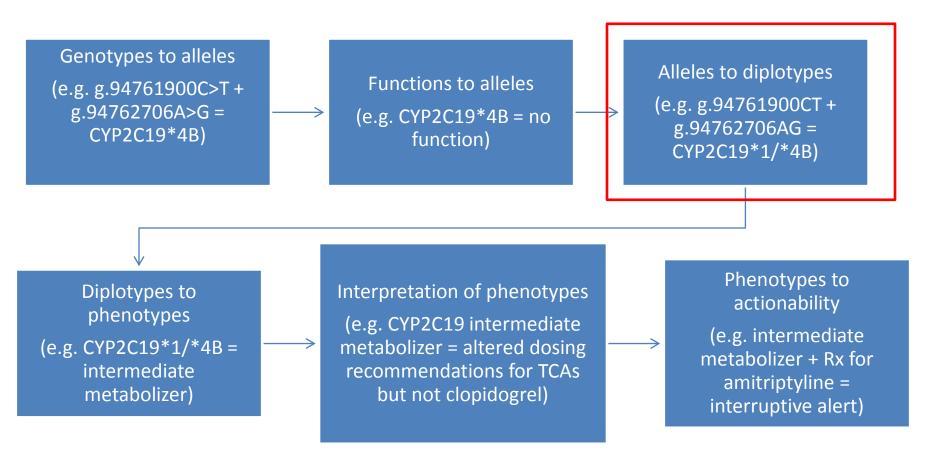
A1

Diplotypye frequencies in major race/ethnic groups estimated using the equation describing Hardy Weinberg equilibrium

Diplotype frequencies in major race/ethnic groups

	Α			E	F	G	н	Ι	
1	Diplotypye	frequencies in ma	jor race/ethnic gro	oups estimated using the eq	uation describing Hardy Weinber	g equilibrium			
2	Diplotype	African	African American	Caucasian (European + North American)	Middle Eastern	East Asian	South/Central Asian	Americas	Oceanian
3	*1/*1	0.118567	0.326809	0.386937	0.493114	0.351966	0.225979	0.463025	0.086383
4	*1/*10	3.48E-06	0.002287	6.23E-06	5.84E-06	6.06E-06	4.75E-06	0.000688	2.94E-06
5	*1/*11	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
6	*1/*12	3.48E-06	0.001146	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
7	*1/*13	3.48E-06	0.00685	0.000629	5.84E-06	6.06E-06	4.75E-06	0.00273	2.94E-06
8	*1/*14	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
9	*1/*15	0.018779	0.00799	0.001252	5.84E-06	0.001218	4.75E-06	0.00273	2.94E-06
10	*1/*16	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
11	*1/*17	0.052853	0.110651	0.133968	0.117885	0.008487	0.082134	0.10759	0.007348
12	*1/*18	3.48E-06	5.70E-06	6.23E-06	5.84E-06	0.000612	4.75E-06	6.81E-06	2.94E-06
13	*1/*19	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
14	*1/*2	0.050767	0.104378	0.090975	0.076452	0.176895	0.159991	0.085801	0.159248
15	*1/*22	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
16	*1/*23	3.48E-06	5.70E-06	6.23E-06	5.84E-06	0.000612	4.75E-06	6.81E-06	2.94E-06
17	*1/*24	3.48E-06	5.70E-06	6.23E-06	5.84E-06	0.000612	4.75E-06	6.81E-06	2.94E-06
18	*1/*25	3.48E-06	5.70E-06	6.23E-06	5.84E-06	0.000612	4.75E-06	6.81E-06	2.94E-06
19	*1/*26	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
20	*1/*27	0.074758	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
21	*1/*28	0.001742	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
22	*1/*29	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
23	*1/*3	0.002785	0.001717	0.003745	0.014595	0.051498	0.007126	0.00205	0.040843
24	*1/*30	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
25	*1/*31	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
26	*1/*32	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
27	*1/*33	3.48E-06	5.70E-06	6.23E-06	5.84E-06	6.06E-06	4.75E-06	6.81E-06	2.94E-06
-	► <i>F</i>	Allele frequency b	y race Diploty	pe frequency by race P	henotype frequency by race F	References change log	+ : •		

	5. 9.	🗳 ab	e ÷					CYP2C19_	frequency_table (5).	dsx - Excel					2
FILE	HOME I	NSERT	PAGE LAYOUT	FORMULA	AS DATA	REVIEW	VIEW								
	👗 Cut 🛅 Copy 🝷	Ca	libri • 11	· A A		≫- ₽	Wrap Text	General *		Normal	Bad	* •	€=		
aste •	✓ Format Painte	er B	I <u>U</u> • •	<u></u> - <u>A</u> -	$\equiv \equiv \equiv$	∉≞	Merge & Center 🔹	\$ • % • €.0 .00 .00 →.0	Conditional Form Formatting • Tab		Neutral	-	Insert •	Delete I	Form
	Clipboard	G.	Font	Es.		Alignment	Fai	Number 5		Styles				Cells	


13

Phenotype frequencies in major race/ethnic groups

Α	В	С	D	E	F	G	Н	Ι
Phentoype frequencies in major r	equation describing Ha	ardy Weinberg equilibi	ium					
			Caucasian			South/Central		
			(European + North	Middle Eastern	East Asian	Asian	Americas	Oceanian
The stine Wilson and Frenchise Wells	African	African American	American)					
Treating "Unknown Function" allel	es as "Normal"							
Ultrarapid Metabolizer	0.023560021	0.037464342	0.046383164	0.02818182	0.000204649	0.029852402	0.025000149	0.000625075
Rapid Metabolizer	0.202485061	0.236445744	0.269320486	0.235828301	0.01712623	0.164340916	0.218411532	0.014706882
Normal Metabolizer	0.385840254	0.359707943	0.390872325	0.493288695	0.357011558	0.226121933	0.47418991	0.086471295
Intermediate Metabolizer	0.338810421	0.323784476	0.268004617	0.225858223	0.474967254	0.455992761	0.258910609	0.434519537
Poor Metabolizer	0.049304242	0.042597496	0.025419408	0.016842961	0.150690309	0.123691989	0.023487799	0.463677211
D								
1								
2 Treating "Unknown Function" allel	es as unknown							
3								
1 Ultrarapid Metabolizer	0.023560021	0.037464342	0.046383164	0.02818182	0.000204649	0.029852402	0.025000149	0.000625075
6 Rapid Metabolizer	0.135808387	0.235634702	0.269277341	0.2358004	0.017094094	0.164306406	0.218379889	0.014701883
5 Normal Metabolizer	0.16318552	0.357199235	0.390747087	0.493171969	0.355670579	0.226026965	0.474052106	0.086412513
7 Intermediate Metabolizer	0.24092059	0.32291842	0.267972677	0.225836653	0.47409522	0.455922515	0.258879935	0.434383395
8 Poor Metabolizer	0.049304242	0.042597496	0.025419408	0.016842961	0.150690309	0.123691989	0.023487799	0.463677211
Unknown	0.387221239	0.004185806	0.000200323	0.000166197	0.002245149	0.000199722	0.000200122	0.000199922
0								
2								
8								
1								
5								
5								
Allele frequency by race Diplotype frequency by race Phenotype frequency by race References change log + : 4								

aste → ✓ Forn	y ▼ mat Painter B <i>I</i> <u>U</u> ▼	- <u>A</u> -		E Horne & Center	- \$ - % • €0 .00 Con	ditional Format as Good Neutr	ral Insert Delete Format ↔		& Share V	VebEx
Clipboard	d 🖙 Font	5	Cita	L:	f		: / - + l			~
C14	- : × / fr	=AVERAGE(AG		τιοής το	or trequ	encles in ma	ijor race/ethr	nic gro	Sups	5
	Ja Ja	///////////////////////////////////////						0		
A	В	С	D	E	F	G	Н	Ι	J	K
								N		
								Subjects		sum of
EN	Authors	Year	PMID	Major ethnicity	Population	Add'I population info	Subject type	genotyped	*1	variants
14	Edeki et al.	1996	8873222	Africa	African-American	Tennessee	healthy	76		
15	Marinac et al.	1996	8823231	Africa	African-American	Kansas City	healthy subjects	100		
13	Goldstein et al.	1997	9110363	Africa	African-American	Durham and Chapel Hill	healthy	108		
1	Luo et al.	2006	16815315	Africa	African American	Los Angeles		236		
21	de Leon et al.	2009	19169185	Africa	African-American	Kentucky	mentally ill patients	478		
240	Kearns et al	2010	20223877	Africa	African-American	Kansas City	sample repository	114		
278	Strom et al	2012	22237437	Africa	African-American	US	n/a	149		
239	Martis et al	2013	22491019	Africa	African-American	New York	healthy blood donors	250		
) 238	Langaee et al	2014	24945780	Africa	African-American		from PEAR and INVEST studies	181		
1 314	Cresci et al.	2014	24762860	Africa	African-American		from TRIUMPH study	670		
2 315	Chaudhry et al.	2015	26021325	Africa	African-American	Americans of African Ancestry in SW USA	1000 Genomes	61		
3										
4	Average								57.27	42.73
5	Min									
5	Max									
7										
8 22	Masimirembwa et al.	1995	7781265	Africa	Zimbabwean	Shona	healthy	84		
9 42	Persson et al.	1996	9014201	Africa	Ethiopian		healthy	114		
) 12	Herrlin et al.	1998	9797796	Africa	Tanzanian	Dar es Salaam	healthy	251		
1 5	Bathum et al.	1999	10510152	Africa	Tanzanian			195		
2 7	Dandara et al.	2001	11372584	Africa	South African	Venda		76		
3 7	Dandara et al.	2001	11372584	Africa	Tanzanian		psychiatric patients and controls	192		
4 10	Hamdy et al.	2002	12047484	Africa	Egyptian	Cairo	healthy	247		
5 2	Aklillu et al.	2002	12142727	Africa	Ethiopian	Sweden	healthy	70		 ~
	Allele frequency by race	Diplotype	frequency by race	Phenotype freque	ency by race References	change log 🕘 🗄 🕴				Þ

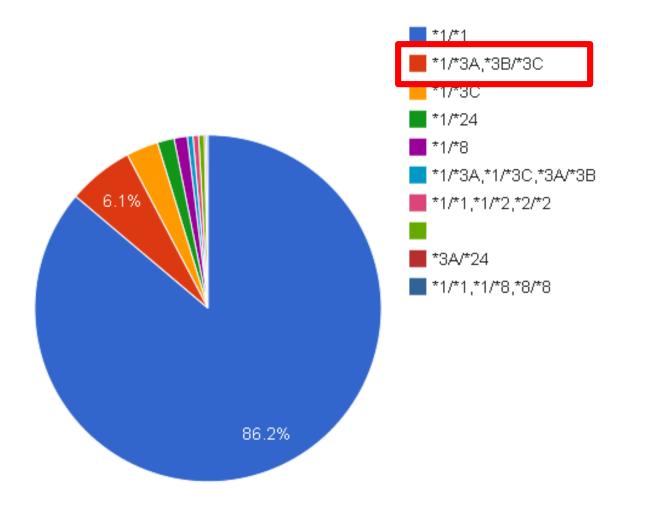
Sorting variants into not only alleles but diplotypes: phasing is required

https://cpicpgx.org/guidelines/ https://www.pharmgkb.org/page/cyp2c19RefMaterials

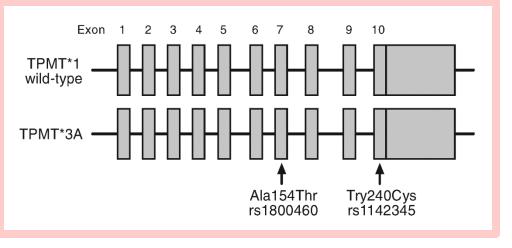
Variants must be phased to assign diplotypes for pharmacogenes

CPIC Gene	Prescribing different for Var/var
	than for var/wt?
ТРМТ	Yes
СҮР2С19	Yes
CYP2D6	Yes
DPYD	Yes
СҮР2С9	Yes
SLCO1B1	Yes
HLA-B	No
VKORC1	Yes
IL28-B	Yes
CFTR	No
G6PD	Yes
UGT1A1	Yes
СҮРЗА5	Yes

DMET_8170_CYP2D6_translation.tx	r bladaaad						
File Edit Format View Help	From genotype or sequencing data, call gene-						
#SJAccession=08-155-0435B							
#PatientName=XXXXX	centric haplotypes and diplotypes—not just						
#DMETfile=DMET_8170.dmet_GT.txt	centric naplotypes and diplotypes—not just						
#TubeNumber=8170							
#PatientID=(0000)02xxxx	variants						
#SampleType=PGEN_DNA							
#TranslationFile=DMET_Plus.v1.20101104DRAF							
#AnnotationFile=DMET_Plus.v1.20090910.dc_a	innot.csv						
#ReporterBuild=0.8.5							
#VerifiedList=VerifiedbyAffy_Nov08 marker	IST.IXT						
	p/serve?objId=PA128&objCls=Gene						
Independent Copy Number 2							
Called Interpretation Code UNIQ+UNK Called Diplotypes Possible *1/*41							
	2/UNK						
Called Novel Diplotypes Possible *2 Copy Number Corrected Alleles NA							
Number Non-reference Probe Sets 5							
Probe Set ID Affy Verified Genome Pos	ition dbSNP RS ID Genotype Call Contributes To Alleles Descri						
	:16947 C/T Ref/Var *2,*8,*11,*12,*14A,*14B,*17,*19,*20,*21,*29,*40,*41,*4						
	28371725 G/A Ref/Var *41 CYP2D6*41_2988G>A(SpliceDefect)						
	51080983 G/A Ref/Var - CYP2D61770G>A						
	:1058164 G/C Ref/Var - CYP2D6_1661G>C(V136V)						
	:1135840 G/C Ref/Var s486T CYP2D6_4180G>C(s486T)						
Number Reference only Probe Sets 25							
	ition dbSNP RS ID Genotype Call Contributes To Alleles Descri						
	1065852 C/C Ref/Ref *4,*10,*14A,*56B,*64 CYP2D6_100C>T(P345)						
	5030862 G/G Ref/Ref *12 CYP2D6*12_124G>A(G42R)						
	572549357 T/T Ref/Ref *15 CYP2D6*15_137insT						
	5030863 G/G Ref/Ref *11 CYP2D6*11_883G>C(SpliceDefect)						
	28371706 C/C Ref/Ref *17, *40, *64 CYP2D6_1023C>T(T107I)						
	61736512 G/G Ref/Ref *29 CYP2D6*29_1659G>A(V136I) 5030655 T/T Ref/Ref *6 CYP2D6*6_1707delT						
AM_12275 N Ch22:40853030 F3							
	3892097 G/G Ref/Ref *4 CYP2D6*4_1846G>A(SpliceDefect)						
	72549356 -/- Ref/Ref *40 CYP2D6*40_1863ins(TTTCGCCCC)2						
	72549354 -/- Ref/Ref *20 CYP2D6*20 _1973insG						
	72549353 AACT/AACT Ref/Ref *19 CYP2D6*19_2539de1AACT						
	35742686 A/A Ref/Ref *3 CYP2D6*3_2549delA						
	72549352 -/- Ref/Ref *21 CYP2D6*21_2573insC						
AM_12265 Y Ch22:40854147 rs	372549351 GACT/GACT Ref/Ref *38 CYP2D6*38_2587delGACT						
	5030656 AGA/AGA REF/REF *9 CYP2D6*9_2615delAAG						
	5030867 A/A Ref/Ref *7 CYP2D6*7_2935A>C(H324P)						
	;72549349 G/G Ref/Ref *44 CYP2D6*44_2950G>C(SpliceDefect)						
	59421388 G/G Ref/Ref *29 CYP2D6*29_3183G>A(V338M)						
	72549347 C/C Ref/Ref *56A, *56B CYP2D6*56_3201C>T(R344X)						
	72549346 -/- Ref/Ref *42 CYP2D6*42_3259insGT						
	1135836 T/T Ref/Ref *18 CYP2D6*18_4125dupGTGCCCACT						
	28360521 G/G Ref/Ref - CYP2D62178G>A						
AM_15503 N Ch22:40858703,Ch22 AM_12291 Y Ch22:40858326 rs							
AM_12291 Y Ch22:40858326 rs	:1080985 C/C Ref/Ref - CYP2D61584C>G						


PharmCAT

Geisi


To automate the annotation of .vcf files with the appropriate haplotypes or diplotypes from the CPIC guideline genes, and generate a report with the corresponding CPIC guideline prescribing recommendations

For, the most commonly observed set of variants could be called TPMT *1/*3A vs *3B/*3C

Assigning/phasing SNPs into haplotypes makes a big difference clinically

About Us - News & Events

CPIC Collaborators

Search - Download Help

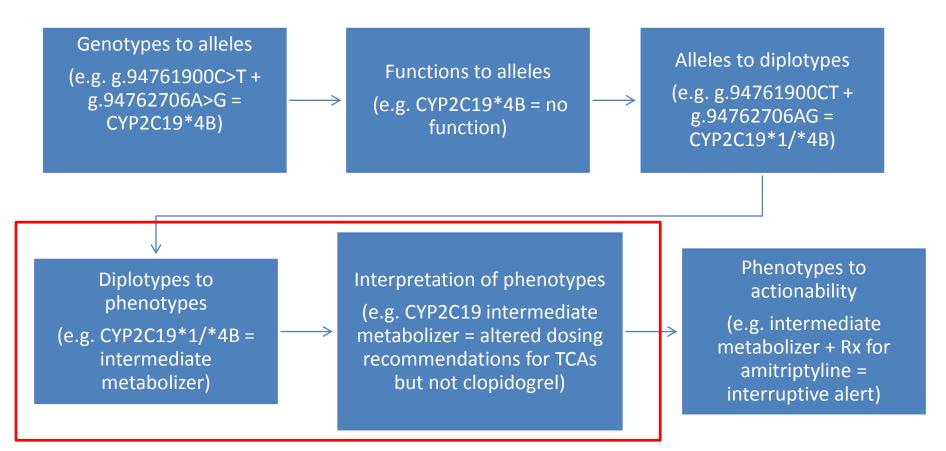
Gene-specific Information Tables for CYP2C19

This page contains reference files created by PharmGKB and CPIC. The files support CPIC guidelines, but are also general resources for CYP2C19.

<u>CYP2C19 Allele Definition Table</u>

- Information about what variants define star (*) alleles
- Mapping of variants to the human genome GRCh38, the RefSeq Gene sequence and protein sequence, and provides rsIDs, if available
- Allele functionality using <u>CPIC standardized terms</u>
- <u>CYP219 Allele Functionality Table</u>
 - References for the allele functionality provided in the Allele Definition Table

<u>CYP2C19 Frequency Table</u>


- Population-based allele frequency reported by references
- · Calculated allele frequency by major ethnic groups based on frequencies reported by references
 - Worldwide race/ethnic designations correspond to the Human Genome Diversity Project Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) [Articles: <u>16355252</u>, <u>12493913</u>], with the addition of the African American category
- Calculated diplotype frequency
- Calculated phenotype frequency

<u>CYP2C19 Diplotype-Phenotype Table</u>

- Mapping of each diplotype to possible phenotype
- $\circ~$ Mapping of possible phenotype to EHR priority result notation and consultation text
- Possible implementation workflow diagram
- <u>CYP2C19 Gene Resource Mappings</u>

CPIC tables allow translation of genetic test results to actionability

https://cpicpgx.org/guidelines/ https://www.pharmgkb.org/page/cyp2c19RefMaterials

	Α	В		С		
1	CYP2C19 Diplotype	Coded Diplotype/Phenotype Summary ^a		EHR Priority Result Notation ^b		
2	*1/*1	CYP2C19 Normal N	1etabolizer	Normal/Routine/Low Risk		
3	*1/*2	CYP2C19 Intermediate	e Metabolizer	Abnormal/Priority/High Risk		
4	*1/*3	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
5	*1/*4A	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
6	*1/*4B	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
7	*1/*5	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
8	*1/*6	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
9	*1/*7	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
10	*1/*8	CYP2C19 Intermediat	e Metabolizer	Abnormal/Priority/High Risk		
11	*1/*9	YP2C19 Likely Intermed	liate Metabolize	Abnormal/Priority/High Risk		
12	*1/*10	YP2C19 Likely Intermediate Metabolize		Abnormal/Priority/High Risk		
13	*1/*11	CYP2C19 Normal Metabolizer		Normal/Routine/Low Risk		
14	*1/*12	Indetermin	ate	None		
15	*1/*13	CYP2C19 Normal Metabolizer		Normal/Routine/Low Risk		
16	*1/*14	Indetermin	ate	None		
17	*1/*15	CYP2C19 Normal Metabolizer		Normal/Routine/Low Risk		
18	*1/*16	YP2C19 Likely Intermediate Metabolize		Abnormal/Priority/High Risk		
19	*1/*17	CYP2C19 Rapid Metabolizer		Abnormal/Priority/High Risk		
20	*1/*18	CYP2C19 Normal Metabolizer		Normal/Routine/Low Risk		
21	*1/*19	YP2C19 Likely Intermediate Metabolize		Abnormal/Priority/High Risk		
22	*1/*22	CYP2C19 Intermediate Metabolizer		Abnormal/Priority/High Risk		
23	*1/*23	Indeterminate		None		
24	*1/*24	CYP2C19 Intermediate Metabolizer		Abnormal/Priority/High Risk		
25	*1/*25	YP2C19 Likely Intermediate Metabolize		Abnormal/Priority/High Risk		
26	*1/*26	YP2C19 Likely Intermediate Metabolize		Abnormal/Priority/High Risk		
27	*1/*27	Indeterminate		None		
	Possible	CYP2C19 Diplotype	2C19Interpre	tation consult note CYP2C19 Imp		

Use standardized terms for phenotypes

Official journal of the American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE

Open

Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC)

Kelly E. Caudle, PharmD, PhD¹, Henry M. Dunnenberger, PharmD², Robert R. Freimuth, PhD³, Josh F. Peterson, MD^{4,5}, Jonathan D. Burlison, PhD¹, Michelle Whirl-Carrillo, PhD⁶, Stuart A. Scott, PhD⁷, Heidi L. Rehm, PhD⁸, Marc S. Williams, MD⁹, Teri E. Klein, PhD⁶, Mary V. Relling, PharmD¹, James M. Hoffman, PharmD, MS¹

Introduction: Reporting and sharing pharmacogenetic test results across clinical laboratories and electronic health records is a crucial step toward the implementation of clinical pharmacogenetics, but allele function and phenotype terms are not standardized. Our goal was to develop terms that can be broadly applied to characterize pharmacogenetic allele function and inferred phenotypes.

Materials and methods: Terms currently used by genetic testing laboratories and in the literature were identified. The Clinical Pharmacogenetics Implementation Consortium (CPIC) used the Delphi method to obtain a consensus and agree on uniform terms among pharmacogenetic experts.

Results: Experts with diverse involvement in at least one area of pharmacogenetics (clinicians, researchers, genetic testing laborato-

rians, pharmacogenetics implementers, and clinical informaticians; n = 58) participated. After completion of five surveys, a consensus (>70%) was reached with 90% of experts agreeing to the final sets of pharmacogenetic terms.

Discussion: The proposed standardized pharmacogenetic terms will improve the understanding and interpretation of pharmacogenetic tests and reduce confusion by maintaining consistent nomenclature. These standard terms can also facilitate pharmacogenetic data sharing across diverse electronic health care record systems with clinical decision support.

Genet Med advance online publication 21 July 2016

Key Words: CPIC; nomenclature; pharmacogenetics; pharmacogenomics; terminology

Final Standardized Terms: Phenotype for Drug Metabolizing Enzymes For example: CYP2C19, CYP2D6, CYP3A5, CYP2C9, TPMT, DPYD, UGT1A1

Final Term	Functional Definition	Example diplotypes/alleles	Term/Gene Category
Ultra-rapid Metabolizer	Increased enzyme activity compared to rapid metabolizers	Two increased function alleles, or more than 2 normal function alleles	CYP2C19*17/*17 CYP2D6*1/*1XN
Rapid Metabolizer	Increased enzyme activity compared to normal metabolizers but less than ultra-rapid metabolizers	Combinations of normal function and increased function alleles	CYP2C19*1/*17
Normal Metabolizer	Fully functional enzyme activity	Combinations of normal function and decreased function alleles	CYP2C19*1/*1
Intermediate Metabolizer	Decreased enzyme activity (activity between normal and poor metabolizer)	Combinations of normal function, decreased function, and/or no function alleles	CYP2C19*1/*2
Poor Metabolizer	Little to no enzyme activity	Combination of no function alleles and/or decreased function alleles	CYP2C19*2/*2

Caudle KE, et al. Genet Med. 2016; Jul 21 [Epub ahead of print]

Final Standardized Terms: Phenotype for Drug Transporters

For example: SLCO1B1

Final Term	Functional Definition	Example diplotypes/alleles	Term/Gene Category
Increased Function	Increased transporter function compared to normal function	One or more increased function alleles	<i>SLCO1B1*1/*14</i>
Normal Function	Fully functional transporter function	Combinations of normal function and/or decreased function alleles	SLCO1B1*1/*1
Decreased Function	Decreased transporter function (function between normal and poor function)	Combinations of normal function, decreased function, and/or no function alleles	<i>SLCO1B1*1/*5</i>
Poor Function	Little to no transporter function	Combination of no function alleles and/or decreased function alleles	SLCO1B1*5/*5

Caudle KE, et al. Genet Med. 2016;Jul 21 [Epub ahead of print]

Final Standardized Terms: (HLA-genes) Phenotype for High-Risk Genotype Status For example: HLA-B*57:01

Final Term	Functional	Example	Term/Gene
	Definition	diplotypes/alleles	Category
Positive	Detection of high-risk allele	Homozygous or heterozygous for high-risk allele	HLA-B*15:02
Negative	High risk-allele not detected	No copies of high-risk allele	

Caudle KE, et al. Genet Med. 2016; Jul 21 [Epub ahead of print]

TPMT post-test interruptive alert is driven off of the standardized term "TPMT intermediate metabolizer" plus the attempt to prescribe a thiopurine

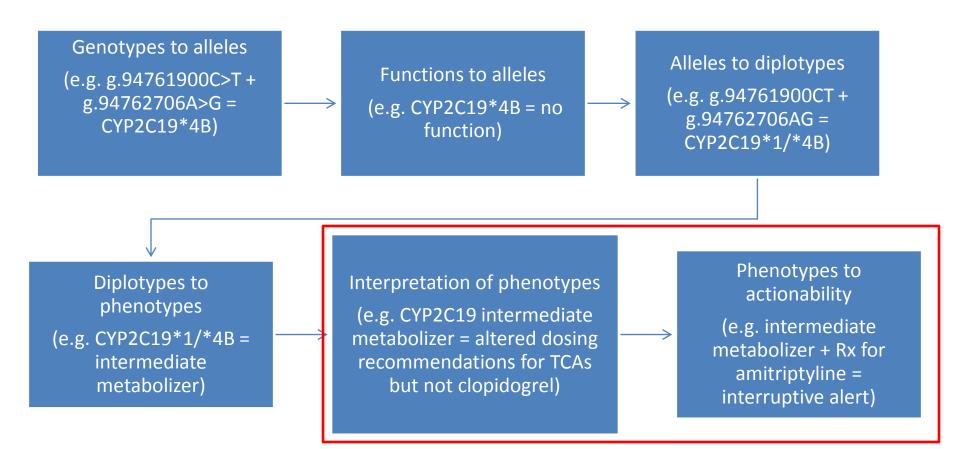
Phenotype vs test result Discern: (2 of 2)

erner

WARNING

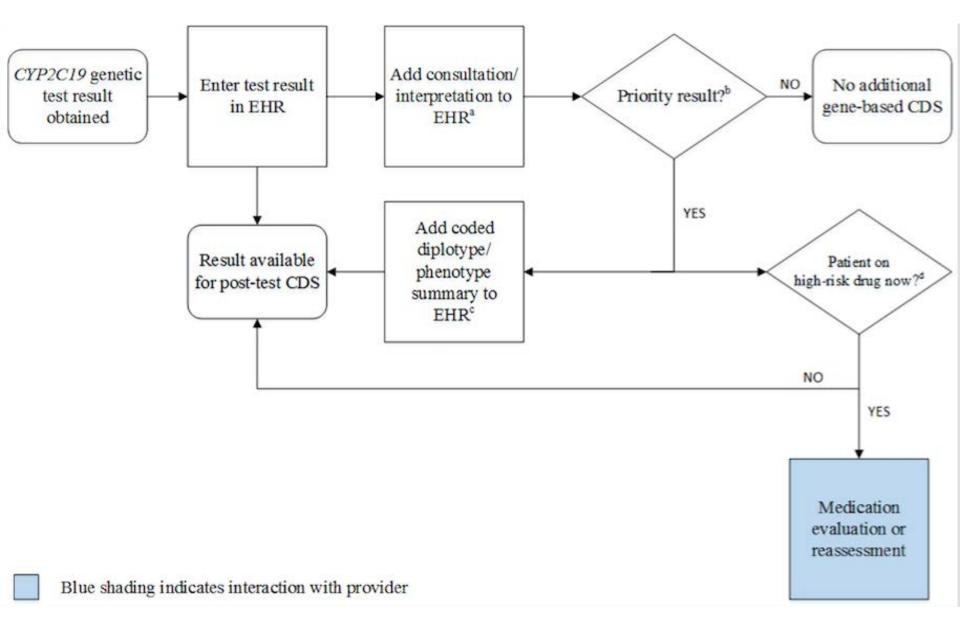
Based on the genotype result, this patient is predicted to be a TPMT-INTERMEDIATE METABOLIZER. The patient is at risk for myelosuppression with normal doses of 6-mercaptopurine. Consider starting 6-mercaptopurine doses at 30 - 70% of the normal dose. Please consult a clinical pharmacist or review the pharmacogenetics tab for more information.

Alert Action


Cancel entry		
Dose altered accordingly		
Modify		
History	Add'l info	OK

< 🚿 👻 👫 🛛 Problem List

Mana	agemo	ent Disciplin	e Vie w	All Problems		•	Change View
*	D	Qualifier	Name of Problem		Onset Date	Classification	
	All	Problems					
			ACUTE LYMPHOCYTI	C LEUKEMIA	5/2/2011	HIMS Sum	
			ALL (acute lymphoblas	tic leukemia)	5/11/2011	HIMS Sum	
			Consented to all option CYP2D6 POOR META LOW RISK CONSOL T Peg Asp 2500 u/m2/IV PT. HAS HICKMAN LII PT. HAS SUBQPORT TPMT INTERMEDIAT	BOLIZER 16 / randomized NE SINGLE LUMEN SINGLE	INTERMEDIATE M myelosuppression starting 6	ÉTABOLIZER. The pati with normal doses of 6-m opurine doses at 30 - 70	is predicted to be a TPMT-
	Ad	vantage	e: can be a ma	anual entry	Cancel entry Dose altered acce Modify History	ordingly Addinto	ОК


Intel Cox. Indie Dooling the south to good and Dooling Down that the too the too on too the too windle

CPIC tables allow translation of genetic test results to actionability

https://cpicpgx.org/guidelines/ https://www.pharmgkb.org/page/cyp2c19RefMaterials

	Α	В	С
1	Coded Genotype/Phenotype Summary ^a	EHR Priority Result Notation ^b	Consultation (Interpretation) Text Provided with Test Result $^{\circ}$
2	CYP2C19 Ultrarapid Metabolizer	Abnormal/Priority/High Risk	This result signifies that the patient has two copies of an increased function allele. Based on the genotype result this patient is predicted to be an ultrarapid metabolizer of CYP2C19 substrates. This patient may be at risk for an adverse or poor response to medications that are metabolized by CYP2C19. To avoid an untoward drug response, dose adjustments or alternative therapeutic agents may be necessary for medications metabolized by CYP2C19. Please consult a clinical pharmacist for more information about how CYP2C19 metabolic status influences drug selection and dosing.
3	CYP2C19 Rapid Metabolizer	Abnormal/Priority/High Risk	This result signifies that the patient has one copy of a normal function allele and one copy of an increased function allele. Based on the genotype result this patient is predicted to be a rapid metabolizer of CYP2C19 substrates. This patient may be at risk for an adverse or poor response to medications that are metabolized by CYP2C19. To avoid an untoward drug response, dose adjustments or alternative therapeutic agents may be necessary for medications metabolized by CYP2C19. Please consult a clinical pharmacist for more information about how CYP2C19 metabolic status influences drug selection and dosing.
4	CYP2C19 Intermediate Metabolizer	Abnormal/Priority/High Risk	This result signifies that the patient has one copy of a normal function allele and one copy of a no function allele. Based on the genotype result this patient is predicted to be an intermediate metabolizer of CYP2C19 substrates. This patient may be at risk for an adverse or poor response to medications that are metabolized by CYP2C19. To avoid an untoward drug response, dose adjustments or alternative therapeutic agents may be necessary for medications metabolized by CYP2C19. Please consult a clinical pharmacist for more information about how CYP2C19 metabolic status influences drug selection and dosing.
5	CYP2C19 Poor Metabolizer	Abnormal/Priority/High Risk	This result signifies that the patient has two copies of a no function allele. Based on the genotype result this patient is predicted to be a poor metabolizer of CYP2C19 substrates. This patient may be at a high risk for an adverse or poor response to medications that are metabolized by CYP2C19. To avoid an untoward drug response, dose adjustments or or alternative therapy may be necessary for medications metabolized by the CYP2C19. Please consult a clinical pharmacist for more information about how CYP2C19 metabolic status influences drug selection and dosing.
4	Possible CYP2C19 Diplotype 2C	19Interpretation consult note CYP2C19 In	mplementation work 🕂 🕴 📢

About Us - News & Events

CPIC Collaborators

Search - Download Help

Gene-specific Information Tables for CYP2C19

This page contains reference files created by PharmGKB and CPIC. The files support CPIC guidelines, but are also general resources for CYP2C19.

<u>CYP2C19 Allele Definition Table</u>

- Information about what variants define star (*) alleles
- Mapping of variants to the human genome GRCh38, the RefSeq Gene sequence and protein sequence, and provides rsIDs, if available
- Allele functionality using <u>CPIC standardized terms</u>
- <u>CYP219 Allele Functionality Table</u>
 - References for the allele functionality provided in the Allele Definition Table

<u>CYP2C19 Frequency Table</u>

- Population-based allele frequency reported by references
- · Calculated allele frequency by major ethnic groups based on frequencies reported by references
 - Worldwide race/ethnic designations correspond to the Human Genome Diversity Project Centre d'Etude du Polymorphisme Humain (HGDP-CEPH) [Articles:16355252, 12493913], with the addition of the African American category
- Calculated diplotype frequency
- Calculated phenotype frequency

<u>CYP2C19 Diplotype-Phenotype Table</u>

- Mapping of each diplotype to possible phenotype
- $\circ~$ Mapping of possible phenotype to EHR priority result notation and consultation text
- Possible implementation workflow diagram

<u>CYP2C19 Gene Resource Mappings</u>

• Mapping of gene to ID or code for HGNC, NCBI, Ensembl and PharmGKB

	А	В	С	D	E
1	Gene Symb	Source	Code Type	Code	
2	CYP2C19	HGNC	Symbol	CYP2C19	
3	СҮР2С19	HGNC	HGNC ID	HGNC:2621	
4	CYP2C19	NCBI	Gene ID	1557	
5	CYP2C19	Ensembl	Ensembl ID	ENSG00000165841	
6	CYP2C19	PharmGKB	PharmGKB ID	PA124	
7					
8					

CPIC® Guideline for Voriconazole and CYP2C19

Most Recent Guideline Publication

Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for *CYP2C19* and Voriconazole Therapy (December 2016)

Updates since publication: No updates on dosing recommendations since publication.

Tables provided in the main manuscript of the guideline

Table 1. Assignment of likely CYP2C29 phenotype based on genotypes

Table 2. Dosing recommendations for voriconazole based on CYP2C19 phenotype for adult patients

Table 3. Dosing recommendations for voriconazole based on CYP2C19 phenotype for pediatric patients (children and adolescents <18 years old)

Supplement to: Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Voriconazole Therapy (December 2016)

Tables provided in the guideline publication supplement or referenced in the guideline^a

Levels of Evidence Linking Genotype to Phenotype
CYP2C19 Allele Definition Table
CYP2C19 Allele Functionality Table 🔀
CYP2C19 Frequency Table
CYP2C19 Diplotype-Phenotype Table
Gene Resource Mapping
CYP2C19 Gene Resource Mappings 🗟

CPIC[®] Guideline for Voriconazole and CYP2C19

Levels of Evidence Linking Genotype to Phenotype

CYP2C19 Allele Definition Table

CYP2C19 Allele Functionality Table 🔀

CYP2C19 Frequency Table 🔀

CYP2C19 Diplotype-Phenotype Table 🖈

Gene Resource Mapping

CYP2C19 Gene Resource Mappings 🖈

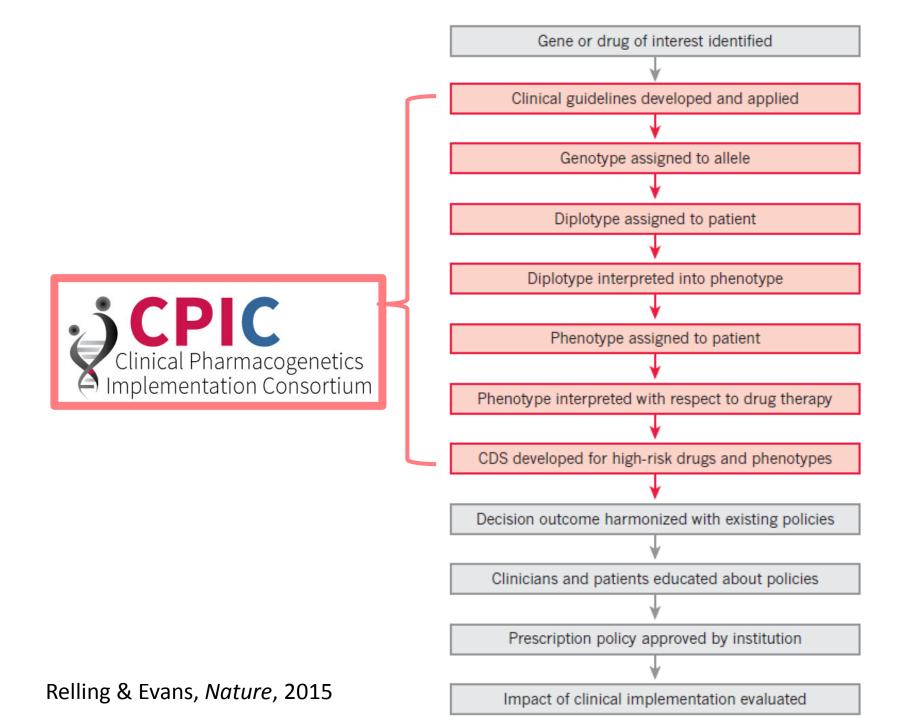
Drug Resource Mapping

Voriconazole 🔀

Clinical Decision Support:^D

Voriconazole Pre- and Post-test alerts and Flow Chart 🔀

^aSome of the tables included in the guideline may have been updated on-line, particularly to reflect newly described or newly characterized alleles. These include the gene-specific information tables (<u>https://www.pharmgkb.org/page/pgxGeneRef</u>) that support CPIC guidelines by providing information regarding star (*) allele definitions, allele function, allele frequency by major ethnic groups, translations of diplotype to phenotype, and gene resource mappings.


	А	В	С	D	E
	Drug or ingredient	Source	Code Type	Code	
-	Voriconazole	RxNorm	RxCUI	121243	
	Voriconazole	DrugBank	cession Numb	DB00582	
	Voriconazole	ATC	ATC Code	J02AC03	
	Voriconazole	PharmGKB	PharmGKB ID	PA10233	

Current estimate: 17 genes, 87 drugs with pharmacogenetically-based prescribing

Number of current and planned CPIC genes, drugs and anticipated guidelines.	Genes	Drugs	Anticipated number of unique guidelines	
Strong or Moderate prescribing action-CPIC level A	14	36	20 (17 published)	
Optional prescribing actions-CPIC level B	7 ^a	50	9	
No prescribing actions-CPIC level C	16 ^b	47	20	
^a Currently this is 3 unique genes (four are already subjects of CPIC level A guidelines). ^b Currently this is 13 unique genes (three are also subject to CPIC level A or B guidelines for other drugs).				

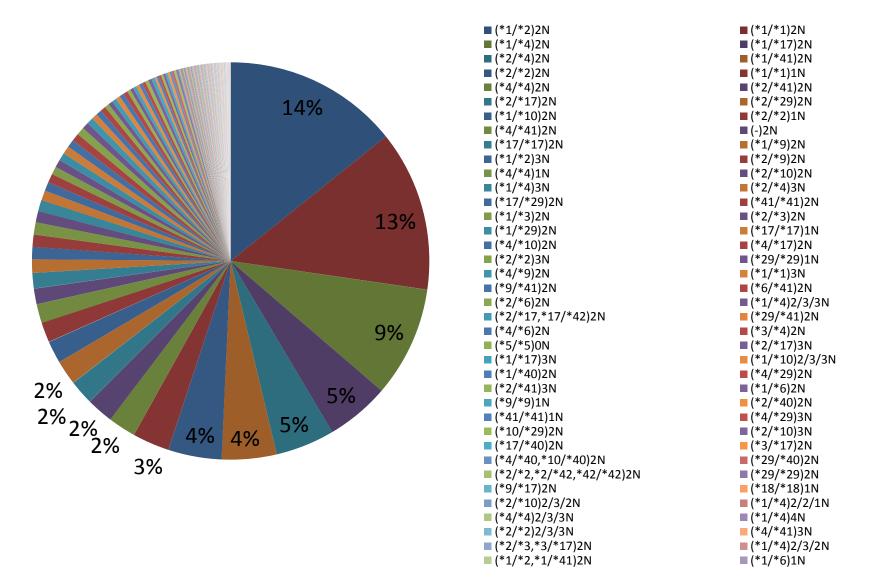
PG4KDS Implementation Timeline www.stjude.org/pg4kds/implement

2011	2012	2013	2014	2015	2016			
TPMT and thic	opurines							
CYP2D6 and c	CYP2D6 and codeine							
	CYP2D6 and tramadol							
	CYP2D6 and paroxetine, fluoxetine, amitriptyline							
		CYP2D6 and ondan	setron					
	SLCO1B1 and simvastatin							
		CYP2D6 and or	xycodone					
		<i>CYP2C19</i>	and clopidogrel					
			DPYD and fluo	ropyrimidines				
			CYP2C19/	CYP2D6 and amitri	ptyline			
				UGT1A1 and a	tazanavir			
				<i>CYP2C19</i>	and voriconazole			
					CYP3A5 and tacrolimus			
St. Jude Children's Research Hospital					CYP2C19/CYP2D6			
ALSAC • Danny Thomas, Founder Finding cures. Saving children.					and TCAs			

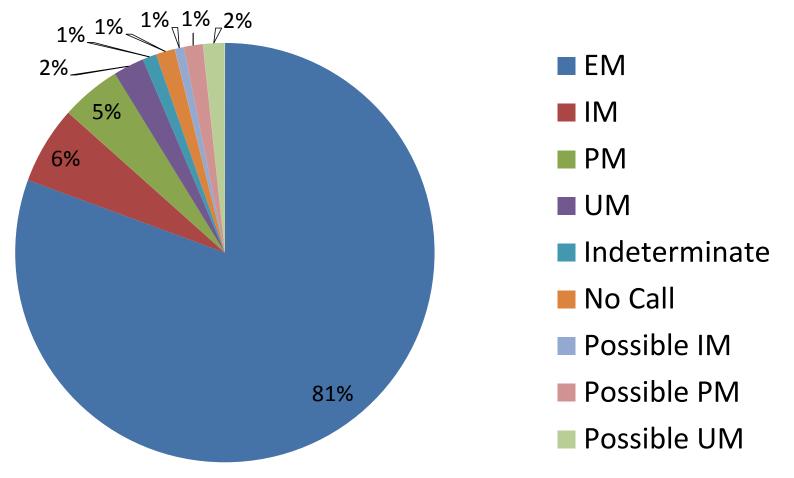
Acknowledgements

- Stanford
 - Teri Klein
 - Russ B. Altman
 - Michelle Whirl-Carrillo
 - Li Gong
 - Katrin Sangkuhl
- St. Jude
 - Kelly Caudle
 - Rose Gammal
 - Cyrine E. Haidar
 - James M. Hoffman
 - Jennifer Hockings
 - Colton Smith

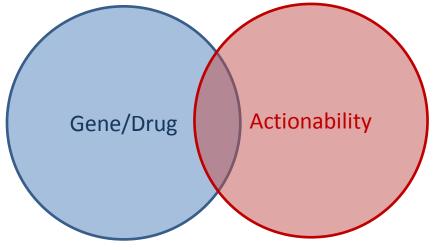
- Stuart Scott, Mt. Sinai
- Marylyn Ritchie, Geisinger
- Sandy Aronson, Partners/Harvard
- Bob Freimuth, Mayo
- CPIC members and observers
- CPIC guideline authors



PG4KDS Protocol Clinical Implementation of Pharmacogenetics


Cyrine Haidar **Kristine Crews** James Hoffman Shane Cross Jennifer Hockings Don Baker & Clinical Informatics **Charles Mullighan** Aditya Gaur Ulrike Reiss Alicia Huettel Cheng Cheng Amar Gajjar RNs: Sheri Ring, Lisa Walters, Paula Condy, Terri Kuehner, Margaret Edwards, Shannon Gibbs, Melinda Wood Austin Springer

Nancy Kornegay Wenjian Yang **Colton Smith** Alejandro Molinelli Alberto Pappo St. Jude Children's Melissa Hudson Ching-Hon Pui ALSAC . Danay Thomas, Founde Finding cures. Saving children. Sima Jeha **Kim Nichols** William E. Evans PG residents: Kevin Hicks, Gillian Bell, Mark Dunnenberger Rose Gammal, Amy Pasternak, Jennifer Hockings Ulrich Broeckel, M.D. **Rachel Lorier Amy Turner**


111 diplotypes observed for CYP2D6

> 111 CYP2D6 diplotypes have translated into 9 phenotype groups—a few of which are actionable

Evidence considered for pharmacogenetic-based clinical recommendations

Gene/Drug Association

- Observational studies
- Randomized clinical studies
- Pre-clinical and clinical studies
- Case reports
- *in vivo* PK
- *in vitro* functional studies
- *in vivo* functional studies

Clinical Actionability

- Therapeutic index
- Severity of disease
- Consequences of suboptimal prescribing
- Availability of genetic tests
- Availability of and evidence for alternative therapy

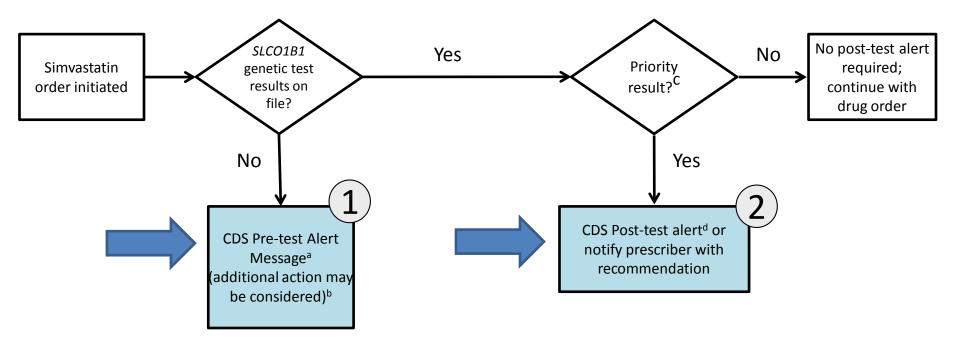
Evidence for CYP3A5 and tacrolimus prescribing recommendations

Clinical	In liver transplant patients, those with the recipient CYP3A5	Uesugi et al. (2014) [<u>171</u>]	Moderate
	rs776746 CT or TT genotype (*1/*3 or *1/*1; "expressers") have	Xue et al. (2014) [33]	
	decreased dose-adjusted trough concentrations of tacrolimus as	Jalil et al. (2014) [<u>172</u>]	
	compared to those with the CC genotype $(*3/*3;$	Buendia et al. (2013) [<u>173</u>]	
	"nonexpressers").	Gómez-Bravo et al. (2013) [118]	
		Shi et al. (2013) [<u>39</u>]	
		Chen et al. (2013) [51]	
		Chen et al. (2013) [54]	
		Ji et al. (2012) [79]	
		Muraki et al. (2011) [64]	
		Uesugi et al. (2006) [70]	
Clinical	In liver transplant patients, no association was found between	Rahsaz et al. (2012) [131]	
	recipient CYP3A5 rs776746 genotype and dose-adjusted trough	de Wildt et al. (2011) [150]	
	concentrations of tacrolimus.	Zhang et al. (2011) [41]	
		Jun et al. (2009) [85]	
		Provenzani et al. (2009) [109]	
		Li et al. (2007) [46]	
		Wei-lin et al. (2006) [49]	
		Yu et al. (2006) [53]	
Clinical	In liver transplant patients, those with the donor CYP3A5	Uesugi et al. (2014) [171]	High
	rs776746 CT or TT genotype (*1/*3 or *1/*1; "expressers") have	Xue et al. (2014) [33]	-
	decreased dose-adjusted trough concentrations of tacrolimus as	Gómez-Bravo et al. (2013) [118]	
	compared to those with the CC genotype $(*3/*3;$	Buendia et al. (2013) [173]	
	"nonexpressers").	Rojas et al. (2013) [174]	
		Durand et al. (2013) [175]	
		Chen et al. (2013) [54]	
		Chen et al. (2013) [51]	
		Ji et al. (2012) [79]	
		Provenzani et al. (2011) [106]	
		Zhang et al. (2011) [41]	
		Muraki et al. (2011) [64]	
		Jun et al. (2009) [85]	
		Provenzani et al. (2009) [109]	
		Li et al. (2007) [46]	

Informatics

Goal and Focus

A formal working group within CPIC was formed in 2013 to focus on informatics aspects of CPIC guidelines, especially as they relate to the application of the CPIC guidelines in electronic health records (EHRs) with clinical decision support (CDS). The goal of the CPIC Informatics Working Group is to support the adoption of the CPIC guidelines by identifying, and resolving where possible, potential technical barriers to the implementation of the guidelines within a clinical electronic environment.


The primary initial focus for CPIC informatics is to:

- create comprehensive tables and other guidance to translate genotype information to phenotype to clinical recommendation for CPIC guidelines, using human readable and structured text with formal knowledge representation.
- develop recommendations for Clinical Decision Support (CDS) in Electronic Health Records (EHRs) based on the CPIC guidelines.

These resources are being incorporated into the supplement of each new and updated CPIC guideline.

The working group will maintain a relationship with groups (such as eMERGE and members of the PGRN) that are implementing pharmacogenetic testing with CDS. The working group works closely with the authors of CPIC guidelines, especially those implementing PGx rules.

SLCO1B1 Genotype and Simvastatin: Point of Care Clinical Decision Support

Note: Circled numerals refer to Supplementary Table 12

^{a,d} See **Supplementary Table S12** for diplotype/phenotype specific pre- and post-test alert example. ^bAdditional actions may include ordering a pharmacogenetic test, preventing the clinician from ordering the medication or allowing the clinician to cancel out of the alert. ^cPriority result defined as a genetic test result that results in a change in drug, drug dose, or drug monitoring.

Clinical Pharmacology & Therapeutics (2014); 96 4, 423–428

Flow Chart Reference Point CDS Alert Text^a CDS Context, Trigger Condition (See Supplemental Figure S3) Relative to Genetic Testing 1 Pre-Test No *SLCO1B1* diplotype may be important for simvastatin side effects. An SLCO1B1 genotype SLCO1B1 does not appear to have been ordered for this result on file patient. Use of an alternative statin or dose may be recommended. Please consult a clinical pharmacist^b for more information. Based on the genotype result, this patient is Post-Test SLCO1B1 -2 Intermediate predicted to have intermediate SLCO1B1 function Function and may be at increased risk for developing simvastatin-associated myopathy. Consider starting with a lower dose of simvastatin (20 mg/day for adults) or choosing an alternate statin agent. Monitor creatine kinase levels routinely. Please consult a clinical pharmacist^b for more information. Based on the genotype result, this patient is Post-Test SLCO1B1 -2 Low Function predicted to have low SLCO1B1 function and may be at high risk for developing simvastatinassociated myopathy. Consider starting with a lower dose of simvastatin (20 mg/day for adults) or choosing an alternate statin agent. Monitor creatine kinase levels routinely. Please consult a clinical pharmacist^b for more information.

Supplemental Table S12. Example Implementation of this Guideline: Point of Care Clinical Decision Support

^aThe specific wording of the alert text may differ among sites.

^bPharmacist, pharmacologist, or a clinician with pharmacogenetic expertise/training.

Clinical Pharmacology & Therapeutics (2014); 96 4, 423–428

In defense of * alleles....

- Don't account for rare or untested variants
- Defined in terms of important variants: negative interrogations have meaning
- At least they force an attempt to phase the variants into haplotypes, and therefore assignment of diplotypes
- Patients have diplotypes, not an agglomeration of SNPs; if we can't assign their allelic status, clinical utility is lessened